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Quantum limits of cold damping with optomechanical coupling
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Abstract. Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with
a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish
the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical
system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency
band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping
whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due
to zero-point energy of the mirror.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 05.40.Jc Brownian motion
– 04.80.Nn Gravitational wave detectors and experiments

1 Introduction

Characterization and control of thermal noise is of par-
ticular interest for very sensitive measurements such as
interferometric gravitational-wave detectors [1,2]. Fluctu-
ations of the mirror position result from the thermal exci-
tation of various mechanical modes of the suspended mir-
rors, corresponding either to external degrees of freedom of
the suspension system or to acoustic modes of the mirror
substrate. This leads to undesirable displacements of the
mirrors and limits the sensitivity of the measurement. For
example internal thermal noise is due to deformations of
the mirror surface and constitutes the main limitation of
gravitational-wave detectors in the intermediate frequency
domain.

Thermal fluctuations are associated with dissipation
mechanisms inherent in the system [3–5] and are therefore
very difficult to avoid. Apart from passive methods such
as the modification of mechanical damping [6] or cryo-
genic methods to lower the temperature [7], these thermal
fluctuations may be reduced by using active systems. In
particular it has been proposed to use an optomechanical
displacement sensor to monitor the Brownian motion of
a mirror [8,9]. Cold damping techniques have also been
studied to reduce the effective temperature of a system
well below the operating temperature [10,11]. They have
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been proposed to reduce the Brownian motion of an elec-
trometer [12] and used to achieve very high sensitivity in
accelerometers developed for fundamental physics appli-
cations in space [13].

Such techniques have been successfully applied to an
optomechanical system composed of a high-finesse cavity
and a feedback loop [9,14]. The displacement of the mir-
ror is measured by the optical Fabry-Perot cavity with a
very high sensitivity [15,16]. This information is fed back
to the mirror via the radiation pressure of an intensity-
modulated laser beam. For an appropriate design of the
feedback loop, the radiation pressure exerted on the mirror
is proportional to the mirror velocity. The servo-control
force then corresponds to a viscous force. In contrast
to passive damping which is necessarily accompanied by
thermodynamic fluctuations [5], this active damping does
not add any thermal noise and allows to greatly reduce the
Brownian motion of the mirror. Power noise reductions
around the mechanical resonance frequency of the mir-
ror as large as 1000 have been experimentally obtained.
As proposed in [9] such short cavities could in principle
be used to monitor the mirrors of a gravitational-wave
interferometer. They would be insensitive to a gravita-
tional wave and allow to reduce the mirrors thermal noise
without affecting the response of the interferometer to the
gravitational signal.

In the experimental conditions of references [9,14],
quantum effects are negligible as compared to thermal
noise so that a classical treatment of the system is sat-
isfactory to fit the experimental results. The analysis of
electromechanical devices has provided precise discussions
of the classical limits of cold damping [17]. It has in partic-
ular been pointed out that thermal fluctuations of position
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can be reduced by electronic damping of the motion with-
out classical limit [18].

For an analysis of the actual limits of cold damping
techniques, it is however essential to consider quantum
fluctuations [11]. It is well-known that quantum fluctua-
tions play a fundamental role in the limits of sensitivity
for interferometric position measurements. The respective
role of the phase noise of the detection beam and of its
intensity noise through radiation pressure effects on the
mirrors has been thoroughly analysed. This has led to the
definition of a standard quantum limit [19,20] and of an
ultimate quantum limit [21]. Reduction of quantum noise
of light has also motivated studies on the behaviour of
quantum noise in presence of active feedback [22,23]. It
has been shown that this technique allows to eliminate
back action in quantum measurements [24] or to reduce
quantum fluctuations of a light beam inside a feedback
loop below the standard quantum limit, allowing an in-
creased sensitivity of measurements [25].

With the optomechanical system, it is possible to re-
duce the initial temperature of the mirror and to improve
the experimental efficiency of the cooling. This opens the
way to a quantum regime of cold damping and raises sev-
eral questions. For passive systems, in the limit of a null
temperature, thermodynamic fluctuations associated with
dissipation reproduce the quantum fluctuations required
by Heisenberg inequalities [26]. What happens to the fluc-
tuations of an actively cooled system? Does cold damp-
ing allow to reduce quantum fluctuations as it does with
classical fluctuations? Is there a temperature limit for this
technique? Do the quantum fluctuations of light introduce
a limit in the efficiency of the cooling process? How is it
possible to reach the limits?

In this paper, we address these questions by a quan-
tum analysis of cold damping with optomechanical cou-
pling. We use a theoretical treatment based on quantum
networks theory [27,28]. This approach allows to treat in
the same framework both thermal and quantum fluctu-
ations, for passive as well as for active elements [11,29].
This quantum description ensure the consistency of the
approach and allows to study the effect of cold damping
for very low initial temperature. It has for example been
proven fruitful in the analysis of quantum limits for ul-
trasensitive measurements with cold damped capacitive
accelerometers [11].

We show that the only limit of cold damping are zero-
point quantum mechanical fluctuations of the mirror, in
agreement with general thermodynamical relations and
Heisenberg inequalities [26]. This limit originates in our
system from quantum fluctuations of the light beam used
in the displacement measurement. As in the case of in-
terferometric measurements, quantum noise of light lim-
its the sensitivity of the measurement by the high-finesse
cavity, and quantum fluctuations of radiation pressure dis-
turb the mirror motion. In contrast with interferometers,
however, radiation pressure effects are controlled by the
active feedback. It is then possible to reduce the mirror
fluctuations down to the zero-point quantum mechanical

Fig. 1. Scheme of the system studied in the paper. An op-
tomechanical transducer made of a high-finesse cavity is used
to monitor the thermal noise of a mirror. This signal is fed
back on the mirror via the radiation pressure of an intensity-
modulated laser beam.

fluctuations, by an appropriate optimization of the cold
damping mechanism.

In Section 2 we present the optomechanical transducer
composed of the high-finesse cavity and the feedback loop.
Basic relations of cold damping mechanism are derived in
Section 3.

In Section 4 we analyze the quantum limits for the
reduction of mirror thermal noise on a narrow frequency
band around the mechanical resonance. We show that it
is possible to reduce this noise to arbitrary low values.

In Section 5 we consider the whole noise spectrum of
the mirror motion. We show that the temperature may be
reduced to zero with a noise spectrum corresponding to
zero-point fluctuations of the mirror.

We finally establish in Section 6 the general limits of
noise in cold damping mechanisms. We show that the op-
tomechanical system may provide a mean to reach these
limits. The effects of this active technique are then equiv-
alent to a coupling with a thermodynamic reservoir at a
null temperature.

2 Optomechanical transducer

The general scheme of the system is shown in Figure 1.
It is based on a measurement of the thermal noise of the
mirror and on a feedback loop which applies a properly
adjusted force on the mirror. The mirror is the end mir-
ror of an optomechanical transducer made of a single-port
high-finesse cavity resonant with the incident laser beam.
Detection of the phase of the reflected field provides a sig-
nal proportional to the mirror displacement. This signal
is used to implement the feedback loop via the radiation
pressure of an intensity-modulated laser beam reflected
from the back of the mirror. This modulated beam ex-
erts a force proportional to the mirror displacement with
a transfer function that can be tailored by the electronics.
In order to apply a viscous damping force, the transfer
function has to be adjusted in such a way that the force is
proportional to the mirror velocity. Practical implemen-
tation can consist in an electronic derivation of the signal
delivered by the optomechanical transducer [9].

The electromagnetic field in the high-finesse cavity is
described by a single harmonic mode characterized by an-
nihilation and creation operators a and a†. To determine
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the input-output relations for the fluctuations we linearize
the evolution equations around the steady state of the
system [30]. For a resonant cavity the fluctuations ain [Ω],
a [Ω] and aout [Ω] for the complex amplitudes at frequency
Ω of the incident, intracavity and reflected fields are re-
lated by

−iΩτa = −γa+
√

2γain + iκX, (1)

aout = −ain +
√

2γa, (2)

where the Fourier transform a [Ω] of the time-dependent
operator a (t) is defined as

a [Ω] =
∫
a (t) eiΩtdt. (3)

Equation (1) determines the dynamics of the intracavity
field. τ is the round trip time of the cavity, γ is its damping
rate (for a lossless cavity, 1− γ and

√
2γ are respectively

the reflection and transmission of the input mirror, with
γ � 1). The second equation is the input-output relation
for the fields. These equations are the usual ones for a
single-ended cavity, with an extra term in equation (1)
which couples the intracavity field to the mirror position
X . Neglecting any retardation effect [31] a displacement
of the mirror induces a phase shift for the intracavity field
proportional to the change of the optical path followed by
the light beam. The optomechanical coefficient κ is given
by [32]

κ = 2k0α0, (4)

where k0 is the field wavevector and α0 is the mean intra-
cavity field.

The input field operators ain and ain† obey the free
fields commutation relations[

ain [Ω] , ain† [Ω′]
]

= 2πδ (Ω +Ω′) , (5)[
ain [Ω] , ain [Ω′]

]
=
[
ain† [Ω] , ain† [Ω′]

]
= 0. (6)

Since a resonant cavity does not introduce any phase shift
between the incident, intracavity, and output mean fields,
the complex amplitudes of these fields can be simultane-
ously taken real. Amplitude and phase quadratures a1 and
a2 of the field then correspond to the real and imaginary
parts of the operator a,

a1 [Ω] = a [Ω] + a† [Ω] , (7)

a2 [Ω] = −i
(
a [Ω]− a† [Ω]

)
. (8)

Assuming the incident field to be in a coherent state, quan-
tum fluctuations of the two input quadratures ain

1 and ain
2

are characterized by

σin
a1a1

[Ω] = σin
a2a2

[Ω] = 1, (9)

σin
a1a2

[Ω] = 0, (10)

where the correlation functions σin
aiaj are defined from the

quantum average of the symmetrized product of operators
ain
i and ain

j ,〈
ain
i [Ω] · ain

j [Ω′]
〉

= 2πδ (Ω +Ω′)σin
aiaj [Ω] . (11)

We now give the fundamental equations for the mirror
motion. We assume that the mechanical properties of the
mirror can be described as a single harmonic oscillator.
Experimentally, mirror motion may result from the exci-
tation of many internal and external acoustic modes. The
description as a single oscillator is however a good approx-
imation when frequencies are limited to a small bandwidth
around one mechanical resonance, by using for example a
bandpass filter either in the detection or in the feedback
loop [9].

We describe the mirror motion by the Fourier trans-
form at frequency Ω of the mirror velocity,

V [Ω] = −iΩX [Ω] . (12)

In the framework of linear response theory [33], the veloc-
ity linearly depends on applied forces which correspond to
an external force Fext, a fluctuating force associated with
damping and describing the coupling with a thermal bath,
and the radiation pressure of the intracavity field,

ZmV = Fext −
√

2~ |Ω|Hmm
in + ~κa1, (13)

where Zm is the mechanical impedance of the mirror. For
a harmonic oscillator of mass M , resonance frequency Ωm

and mechanical damping Hm, this impedance has the sim-
ple form,

Zm = M

(
−iΩ +

Ω2
m

−iΩ

)
+Hm. (14)

Note that we have assumed for simplicity that the mechan-
ical oscillator is viscously damped, that is Hm is indepen-
dent of frequency. This damping coefficient is related to
the mechanical quality factor Q by

Q =
MΩm

Hm
· (15)

Last term in equation (13) represents the optomechani-
cal coupling between the mirror and the intensity of light
in the cavity. It corresponds to quantum fluctuations of
radiation pressure [34]. In the linearized approach this
non-linear coupling reduces to a term proportional to
the amplitude quadrature a1 of the intracavity field [32].
The optomechanical coefficient κ is the same as in equa-
tion (1).

Quantum and thermal fluctuations associated with the
damping can be deduced from fluctuation-dissipation the-
orem [26] and appear in equation (13) as an additional
term proportional to an input field min. This field is the
quantum analog to the usual Langevin force associated
with thermal fluctuations for a damped mechanical oscil-
lator coupled to a thermal bath at high temperature. It
obeys the following commutation relation,[

min [Ω] ,min [Ω′]
]

= 2πδ (Ω +Ω′) ε (Ω) , (16)

where ε (Ω) denotes the sign of the frequency Ω. When
the mechanical bath is in a thermal state at temperature
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Tm, the correlation function σin
mm [Ω] of the input field min

is equal to [11,26]

σin
mm [Ω] =

1
2

coth
~ |Ω|

2kBTm
, (17)

where kB is the Boltzman constant.
For a free mechanical oscillator the only remaining

force in equation (13) is the input field min and the cor-
relation function of the mirror velocity V is given by

|Zm|2 σV V [Ω] = ~ |Ω|Hm coth
~ |Ω|

2kBTm
· (18)

Assuming the quality factor Q large compared to 1, the
width Hm/M of the resonance is much smaller than its res-
onance frequency Ωm. We can then assume that the spec-
trum of the fluctuating force associated with the damping
corresponds to a white noise and we replace Ω by Ωm in
the right part of this equation. The velocity spectrum has
the usual Lorentzian shape corresponding to a mechanical
oscillator in thermal equilibrium at an effective tempera-
ture Θm defined as

|Zm|2 σV V [Ω] = 2HmkBΘm, (19)

kBΘm =
~Ωm

2
coth

~Ωm

2kBTm
· (20)

At high temperature (kBTm � ~Ωm/2) we find as ex-
pected that Θm is equal to Tm. The oscillator temper-
ature Θm however decreases with the bath temperature
Tm and tends at low temperature towards a limit equal
to ~Ωm/2kB. This limit is associated with the zero-point
quantum fluctuations of the mechanical oscillator. Θm

may be written as,

kBΘm = ~Ωm

(
nΘ +

1
2

)
, (21)

where nΘ is the number of thermal phonons. It is equal to
kBTm/~Ωm at high temperature and reduces to 0 at low
temperature. The term 1/2 in equation (21) represents the
energy of quantum zero-point fluctuations.

Note that the oscillator temperature Θm is also related
to the variance ∆V 2 of the velocity (equal to the integral
of σV V ) by the equipartition theorem,

1
2
M∆V 2 =

1
2
kBΘm. (22)

3 Detection and cold damping

We now describe the measurement and the feedback loop.
In presence of the intracavity radiation pressure and of
an external force, the mirror velocity can be written from
equations (1, 13) as a function of the input mechanical
and optical fields,

ZmV = Fext −
√

2~ |Ω|Hmm
in +

√
2γ

γ − iΩτ
~κain

1 . (23)

This equation clearly shows the two fundamental noise
sources for the mirror motion, corresponding to the cou-
pling to the external bath (second term), and to the back
action of the measurement (last term).

From equations (1, 2) output fields can be related to
input fields and to mirror velocity,

aout
1 =

γ + iΩτ
γ − iΩτ

ain
1 , (24)

aout
2 =

γ + iΩτ
γ − iΩτ

ain
2 + i

2
√

2γ
Ω (γ − iΩτ)

κV. (25)

The first equation shows that the reflected amplitude fluc-
tuations are obtained from the incident ones by a simple
phase shift. As expected for a resonant cavity, amplitude
fluctuations are not coupled to the mirror motion. On the
contrary the phase of the reflected beam depends on the
cavity length and a measurement of the phase quadrature
aout

2 provides information about the mirror motion. The
result of the measurement can be described by an estima-
tor V̂ of the velocity, which is proportional to aout

2 and
which appears as the sum of V and of some measurement
noise,

V̂ = −i
Ω (γ − iΩτ)

2
√

2γκ
aout

2

= V − i
Ω (γ + iΩτ)

2
√

2γκ
ain

2 . (26)

The sensitivity of the velocity measurement is limited by
the phase noise of the incoming beam. The added noise
in equation (26) is proportional to

√
γ and inversely pro-

portional to the mean intracavity amplitude α0 (Eq. (4)).
As a consequence the sensitivity is increased when cav-
ity finesse or light power are increased. One can also note
a frequency filtering by the cavity, the sensitivity being
reduced for frequencies larger than the cavity bandwidth
Ωcav = γ/τ .

We apply a feedback force on the mirror proportional
to the result of the measurement, that is to the velocity
estimator V̂ ,

Ffb = −ZfbV̂ , (27)

where Zfb is an impedance which characterizes the trans-
fer function of the feedback loop. The measurement noise
as well as the back action noise are already present in
our analysis. Other noise sources may be added to the
feedback force, such as the quantum fluctuations of the
radiation pressure due to the auxiliary laser beam used
for feedback control, the electronic noise of the feedback
loop, or the quantum efficiency of the detection. As it is
well-known in high sensitivity measurement, the dominant
noise sources are those associated with the first stage of de-
tection [35]. This result also holds for a quantum analysis
of noise in presence of feedback [11,29]. As a consequence
we neglect in the following these extra noise sources.



J.-M. Courty et al.: Quantum limits of cold damping with optomechanical coupling 403

The velocity Vfb in presence of feedback can be de-
duced from equation (23). One gets

(Zm + Zfb)Vfb = Fext −
√

2~ |Ω|Hmm
in +

√
2γ

γ − iΩτ
~κain

1

+i
Ω (γ + iΩτ)

2
√

2γκ
Zfba

in
2 . (28)

The main effect of feedback is to change the mechanical
impedance of the mirror which becomes the sum of the
free mirror impedance and of the servocontrol impedance,

Z = Zm + Zfb. (29)

The feedback loop also adds noise to the mirror (last term
in Eq. (28)). It corresponds to a contamination noise in-
troduced by the feedback mechanism and proportional to
the measurement noise of the velocity estimator. As a con-
sequence there are two different noise sources associated
with light and corresponding to the back action and mea-
surement noises (two last terms in Eq. (28)).

The general expression of the velocity noise spectrum
(without any assumption on incident field fluctuations) is
given by

|Z|2 σfb
V V = 2~ |Ω|Hmσ

in
mm +

2γ
(γ2 +Ω2τ2)

~2κ2σin
a1a1

+
Ω2
(
γ2 +Ω2τ2

)
8γκ2

|Zfb|2 σin
a2a2

−~Ω Im (Zfb)σin
a1a2

. (30)

Let us first examine the effect of feedback when quantum
noises can be neglected as compared to thermal noise. To
obtain a cold damping mechanism, the feedback force Ffb

must correspond to a viscous force, that is the feedback
impedance Zfb must be real (Zfb ≡ Hfb, Im (Zfb) = 0).
In this case, the feedback loop changes the mechanical
impedance Z by adding a damping Hfb to the mechani-
cal damping Hm. Neglecting the quantum noise of light
(three last terms in Eq. (30)), one finds that the velocity
noise spectrum has the same expression as for a free me-
chanical oscillator in thermal equilibrium (Eqs. (17, 18)),
except for the modification of the mechanical impedance.
In other words the feedback loop changes the damping of
the mirror without adding any noise. In this classical anal-
ysis of cold damping, the mirror appears to be in a thermal
equilibrium at an effective temperature Θfb given by,

Θfb =
Hm

Hm +Hfb
Θm =

Θm

1 + g
, (31)

where the feedback gain g is defined as

g = Hfb/Hm. (32)

This result shows that the mirror is cooled at an effective
temperature inversely proportional to the gain. It con-
firms the absence of classical limits for displacement noise
reduction with cold damping [18].

Although the main properties of the cold damping
mechanism are properly described here, one gets some in-
consistency for large gains since the effective temperature
can decrease down to 0 and it is not limited to the zero-
point effective temperature ~Ωm/2kB corresponding to a
mechanical oscillator at a null temperature (see Eq. (20)
and discussion thereafter). This is of course due to the
fact that we have neglected all quantum noises. We study
in the following how this result is modified by taking into
account these noises.

4 Noise reduction at resonance

We study in this section the maximum noise reduction
that can be obtained at the resonance frequency Ωm when
the measurement and feedback parameters are optimized.
For this purpose, we assume that the feedback corre-
sponds to a cold damping mechanism, that is the feedback
impedance Zfb is real (Zfb ≡ Hfb).

The expression of the velocity noise spectrum
(Eq. (30)) can be simplified for a mechanical reservoir in a
thermal state and for light in a coherent state. In this case
the incident field noises are given by equations (9, 10, 17).
We assume as in Section 2 that the fluctuating incident
force associated with mechanical damping has a white
noise spectrum. We furthermore assume that the cavity
bandwidth Ωcav = γ/τ is large compared to the mechan-
ical resonance frequency Ωm so that we can neglect the
cavity filtering appearing in equation (30). One then gets,

|Z|2 σfb
V V = 2HmkBΘm +

2
γ
~2κ2 +

Ω2γ

8κ2
H2

fb. (33)

The resulting noise spectrum corresponds to the response
of the mirror to the sum of thermal, back action, and
measurement noises. The mechanical impedance Z which
characterizes this response takes into account the presence
of feedback.

At resonance, the mechanical impedance takes the sim-
ple form,

Z [Ωm] = Hm +Hfb. (34)

From equations (33, 34) one can easily show that arbi-
trarily small values of the velocity noise at resonance can
be reached by a proper choice of the optomechanical co-
efficient κ and of the feedback gain g = Hfb/Hm. Let us
define an optomechanical parameter ζ by

ζ =
4~κ2

γΩmHm
· (35)

ζ takes into account the light intensity via κ, the cavity
finesse via γ, and the mechanical response of the mirror.
This parameter can be made much larger than 1 for a high-
finesse cavity, high incident power, and high mechanical
quality factor. ζ is actually equal to 4QψNL/γ where ψNL

is the phase-shift of the intracavity field due to the mean
radiation pressure. ψNL can be of the same order as γ for
realistic experimental parameters [36].
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The velocity noise at resonance is then given by,

σfb
V V [Ωm] =

~Ωm

Hm

1
(1 + g)2

(
2nΘ + 1 +

ζ

2
+
g2

2ζ

)
, (36)

where nΘ is the number of thermal phonons (Eq. (21)).
The velocity noise is now normalized to the noise
~Ωm/Hm of the free oscillator at zero temperature (see
Eqs. (19, 21)). Both mechanical noise (term 2nΘ + 1 in
Eq. (36)) and radiation pressure effects (term ζ/2) are re-
duced by the feedback loop. In other words, the mirror
motion induced by the quantum fluctuations of radiation
pressure is controlled in the same way as the Brownian
motion. For very large gains g, both noises vanish and
the resulting velocity noise is only due to the phase noise
added by the measurement (last term in Eq. (36)). This
last noise can also be made small by increasing the sensi-
tivity of the measurement.

Taking ζ � 1, g �
√
ζ, and g � √

nΘ, all three
terms are small compared to 1 and the velocity noise of
the cooled mirror becomes smaller than the noise of the
free mirror at zero temperature,

σfb
V V [Ωm]� ~Ωm

Hm
· (37)

As pointed in [37] a quantum treatment introduces extra
noise sources that were absent in a classical analysis. Our
results however show that as in the classical case there is
no limit on the noise suppression.

It may appear surprising that the velocity noise at res-
onance can be made arbitrarily small. We remind however
that cold damping modifies the dynamics of the oscillator.
As a consequence the reduction of velocity noise is made
at the expense of a widening of the mechanical resonance.
The result is fully consistent with quantum mechanics
since the velocity noise σfb

V V [Ωm] is larger than the value
~Ωm/ (Hm +Hfb) corresponding to the zero-point fluctu-
ations of a damped oscillator with the same mechanical
response. In next section we analyze more precisely the
limits due to quantum noise by studying parameters that
depend on noise over all frequencies such as the variance
of the velocity or the effective temperature.

5 Effective temperature

In presence of feedback the width of the resonance be-
comes (1 + g)Hm. If we assume that this width stays
smaller than the resonance frequency Ωm, that is if the
gain g is smaller than the quality factor Q, one can ne-
glect the frequency dependence of the last term in equa-
tion (33) and the velocity noise spectrum of the cooled
mirror at any frequency Ω can be written,

|Z|2 σfb
V V [Ω] = Hm~Ωm

(
2nΘ + 1 +

ζ

2
+
g2

2ζ

)
, (38)

where the number of thermal phonons nΘ and the optome-
chanical parameter ζ are defined in equations (21, 35). The

Fig. 2. Velocity noise spectra σfb
V V [Ω] of the mirror in dB scale,

without feedback (curve a) and for increasing values of the gain
g from 10 to 104 (curves b to e). The spectra have a Lorentzian
shape with an increased width and a reduced amplitude. The
limit for high gains is related to the quantum noise of light.
Parameters are as follows: quality factor Q = 106, number
of thermal phonons nΘ = 105, and optomechanical coefficient
ζ = 1.

resulting noise spectrum is shown in Figure 2 for different
values of the feedback gain g. The reduction and widening
of the resonance are clearly visible.

For very large gains, the total impedance Z is pro-
portional to g and the noise spectrum is limited by the
phase noise in the measurement (last term in Eq. (38)).
In other words, the feedback works in such a way that its
error signal, equal to the velocity estimator V̂ , goes to 0.
The mirror velocity Vfb then reproduces the measurement
noise of the estimator (see Eq. (26)).

Since the right part in equation (38) is independent
of frequency, the noise spectrum has always a Lorentzian
shape. The cooled mirror is thus equivalent to a har-
monic oscillator of resonance frequency Ωm, damping
(1 + g)Hm, in thermal equilibrium at an effective tem-
perature Θfb. This temperature can be determined either
from the calculation of the variance ∆V 2 as the integral
of the noise spectrum and from the equipartition theorem
(Eq. (22)), or by identifying the noise spectrum with the
one of a free oscillator (Eq. (19)), taking into account the
fact that the damping is increased by a factor 1 + g. One
then gets

kBΘfb =
~Ωm

2
1

1 + g

(
2nΘ + 1 +

ζ

2
+
g2

2ζ

)
. (39)

The effective temperature Θfb of the cooled mirror is plot-
ted in Figure 3 as a function of the optomechanical coef-
ficient ζ, for different values of the gain g and for an ini-
tial number of thermal phonons nΘ equal to 105. Efficient
reduction of temperature can be achieved as soon as g is
larger than nΘ (curves c and d). The effective temperature
is then determined by quantum noise. As in usual optical
measurements [19,20], phase noise of the measurement is
dominant for low values of ζ (term g2/2ζ in Eq. (39)), and
back action of radiation pressure is dominant for high ζ
(term ζ/2 in Eq. (39)). A quantum limit is reached for
a precise value of ζ which corresponds to the case where
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Fig. 3. Effective temperature Θfb of the cooled mirror normal-
ized to the zero-temperature limit ~Ωm/2kB, as a function of
the optomechanical coefficient ζ in logarithmic scales. Curves a
to d are obtained for gains g equal to 10, 103, 105, and 107. For
each gain, there exists a limit which corresponds to a compro-
mise between measurement and back action noises. This limit
decreases down to 1 for large gains as the residual thermal
noise is reduced (dashed curve). The initial number of thermal
phonons nΘ is equal to 105.

both noises are equal,

ζopt = g. (40)

The minimum effective temperature is then,

kBΘ
opt
fb = ~Ωm

(
nΘ

1 + g
+

1
2

)
. (41)

We have thus found that for a given value of g, there ex-
ists a limit for the effective temperature of the mirror.
This limit evolves from the initial temperature Θm for no
gain, down to ~Ωm/2kB for an infinite gain (dashed curve
in Fig. 3). This minimum corresponds to the effective tem-
perature of a free harmonic oscillator coupled to a thermal
bath at zero temperature (Eq. (20)).

Comparison between the cases of a cold damped mir-
ror (Eq. (41)) and a free mirror (Eq. (21)) shows that
the number of thermal phonons is reduced by a factor
1 + g. This is the same reduction than with classical cold
damping (Eq. (31)). On the contrary the quantum part
(term 1/2) remains unchanged. One can then define an
effective number nΘfb of thermal phonons in presence of
feedback as,

kBΘfb = ~Ωm

(
nΘfb +

1
2

)
. (42)

The minimum number of thermal phonons is reached for
ζ = g and is inversely proportional to the gain,

nopt
Θfb =

nΘ
1 + g

· (43)

This equation is the quantum generalization of the classi-
cal behavior of cold damping (Eq. (31)).

6 Quantum limits of cold damping

We revisit now the results obtained in previous sections
within the framework of a general analysis of the noise
added by a feedback mechanism. We will show that a min-
imum noise is imposed by quantum mechanics and that
the cold damped mirror reaches this limit.

When a quantum system is coupled to a thermal bath,
the quantum fluctuations-dissipation theorem provides a
relation between the commutator of the force and the noise
added by the coupling. A mean to obtain this relation is to
analyze the unitarity of the input-output relations of the
system. This kind of analysis also holds for active systems
and provides lower bounds to the noise associated with
amplifying devices [38–40].

This kind of analysis may be used to study the noise
associated to a linear feedback. Let us consider a sys-
tem characterized by a velocity V and an impedance Zm

which is linearly fed back by a force Ffb applied with an
impedance Zfb. Equations of the system can be written as
the general relations,

ZmV = Fext −
√

2~ |Ω|Hmm
in + Ffb, (44)

Ffb = −ZfbV + F in
fb , (45)

where min is the input field associated with the free sys-
tem. To preserve the commutation relations one has to
introduce a force F in

fb in equation (45) which appears as
a noise term for the feedback force. To write the input-
output transformation one has also to introduce an out-
put field mout defined in the same way as the output light
field aout for an optical system [11],

mout = min +

√
2Hm

~ |Ω|V. (46)

The output field mout is a free field which can be related
to the incident fields min and F in

fb from equations (44, 45).
One gets,

mout =
Z − 2Hm

Z
min +

√
2Hm

~ |Ω|
1
Z
F in

fb , (47)

where Z is the impedance in presence of feedback
(Eq. (29)).

The unitarity of input-output transformations implies
that commutators of the output fieldmout and of the input
field min are identical (Eq. (16)). As a consequence one
gets from equation (47) the commutator of the noise added
by feedback,[

F in
fb [Ω] , F in

fb [Ω′]
]

= 2πδ (Ω +Ω′) 2~ΩHfb. (48)

This commutator implies a Heisenberg inequality on the
correlation function σin

FfbFfb
of the force F in

fb ,

σin
FfbFfb

[Ω] ≥ ~ |Ω|Hfb. (49)
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This feedback noise has of course important consequences
for the resulting noise spectrum of the system. The corre-
lation function σfb

V V in presence of feedback can be calcu-
lated from equations (44, 45) and one gets,

|Z|2 σfb
V V = 2~ |Ω|Hmσ

in
mm + σin

FfbFfb
. (50)

As in previous sections we assume that the total
impedance Z is characterized by a width of the reso-
nance much smaller than its resonance frequency Ωm. We
can then replace Ω by Ωm in the right part of equa-
tion (50). The servocontrolled system is found to have
the same velocity noise spectrum than an oscillator with
an impedance Z, in thermal equilibrium at an effective
temperature Θfb given by

Θfb =
HmΘm +HfbΘ

in
fb

Hm +Hfb
, (51)

where Θin
fb is the effective noise temperature of the feed-

back force defined as,

σin
FfbFfb

[Ωm] = 2HfbkBΘ
in
fb. (52)

The effective temperature of the servocontrolled system is
the average of the temperatures of the free system and of
the feedback noise, weighted by the corresponding damp-
ing coefficients.

If the feedback noise corresponds to a coupling with
a thermal bath at the initial temperature (Θin

fb = Θm),
one finds that the feedback loop does not change the tem-
perature. The servocontrol modifies the impedance of the
system without any cooling effect. In this case it is equiva-
lent to a modification of the impedance by passive means.

Quantum mechanics does not however prevent to use a
feedback loop which has a lower noise temperature. With
active elements or in presence of frequency transfer [11],
the noise temperature is not the physical temperature of
the device but it is determined by the physical process
coming into play. The effective temperature of the ser-
vocontrolled system can therefore be reduced, down to
a limit imposed on feedback noise by the Heisenberg in-
equality (Eq. (49)),

kBΘ
in
fb ≥

~Ωm

2
· (53)

In this situation, the whole detection and feedback system
acts on the oscillator as a coupling with a thermal reservoir
at an effective temperature Θin

fb lower than Θm.
We analyze now the performance of the optomechani-

cal cold damping in light of these limits. The added force
F in

fb can be deduced from equation (28),

F in
fb =

√
2γ

γ − iΩτ
~κain

1 + i
Ω (γ + iΩτ)

2
√

2γκ
Zfba

in
2 . (54)

It can be checked that this force verifies the required com-
mutation relation (Eq. (48)). From equations (23–25), it
is even possible to write input-output relations for all the
fields (mechanical field m, light fields a1 and a2) and to
verify the global unitarity of the whole transformation.

Let us first examine the case of a dissipative feedback
corresponding to the cold damping situation (Im (Zfb) =
0, coherent incident field, and cavity bandwidth much
larger than the mechanical resonance frequency). The
noise spectrum of the added force can be derived from
equation (54) and leads to the feedback noise tempera-
ture,

kBΘ
in
fb =

~Ωm

2

(
ζ

2g
+

g

2ζ

)
, (55)

where the feedback gain g and the optomechanical param-
eter ζ have been defined in equations (32, 35). The feed-
back noise temperature obviously satisfies the Heisenberg
inequality (Eq. (53)) and reaches its minimum value
~Ωm/2 when ζ is equal to g. This equation sheds a new
light on the results of previous section. The effect of cold
damping can be interpreted in this case as a coupling with
a thermal reservoir at zero temperature.

Let us finally examine a more general situation for
which the incident field can be in a squeezed state and
the feedback impedance can have a non zero reactive part.
In this case, the added noise derived from equation (54)
leads to a feedback noise temperature,

kBΘ
in
fb =

~Ωm

2

[
|Zfb|
Hfb

(
ζ

2g
σin
a1a1

+
g

2ζ
σin
a2a2

)
− Im (Zfb)

Hfb
σin
a1a2

]
, (56)

where the gain g is now defined as |Zfb| /Hm.
With light fluctuations corresponding to a coherent

state, the intensity-phase correlations σin
a1a2

are zero and
the minimal temperature, reached for ζ = g, is equal to

kBΘ
in
fb =

~Ωm

2
|Zfb|
Hfb

· (57)

If the reactive part of the feedback impedance is not zero,
the effective temperature is larger than the minimum im-
posed by the Heisenberg inequality (Eq. (53)).

It is however possible to reach the optimum value
~Ωm/2 with an incident squeezed state, where intensity
and phase noises are correlated. Correlation functions of
the incident field must be equal to

σin
a1a1

=
g

ζ

|Zfb|
Hfb

, (58)

σin
a2a2

=
ζ

g

|Zfb|
Hfb

, (59)

σin
a1a2

=
Im (Zfb)
Hfb

· (60)

Note that this state is a minimum state for the generalized
Heisenberg inequality of the field [41],

σin
a1a1

σin
a2a2
−
(
σin
a1a2

)2
= 1. (61)

Two situations are of particular interest. First, we still
consider a cold damping mechanism (Im (Zfb) = 0), but
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with an incident field which phase is squeezed by a factor
e−ξ,

σin
a1a1

= eξ, σin
a2a2

= e−ξ, σin
a1a2

= 0. (62)

In this case, the zero noise temperature can be reached
for a smaller optomechanical parameter ζ, equal to e−ξg.
The effect is actually similar to the one that can be ob-
tained in interferometric measurements [19]. The incident
phase-squeezed state reduces the phase noise of the mea-
surement, at the expense of an increase of the back ac-
tion noise due to radiation pressure. As a consequence the
standard quantum limit can be reached for a lower light
power. For the cold damped mirror, this corresponds to a
translation towards the left of the curves in Figure 3.

In the second situation we consider that the reactive
part of the feedback impedance is not zero. This may
be wanted to change both the mechanical damping and
the mechanical resonance position. A squeezed state with
intensity-phase correlations is required to reach the min-
imum of added noise. For a value of the optomechanical
parameter ζ equal to g, the squeezed quadrature has to
be rotated by an angle of 45◦ with respect to phase and
intensity quadratures, and the squeezing factor must be
equal to

e−ξ =
|Zfb| − |Im (Zfb)|

Hfb
· (63)

The optimum noise is then reached for a finite squeezing
factor, except for a purely reactive feedback (Hfb = 0).
In this case, the zero noise temperature is only a limit
corresponding to an infinite squeezing.

The zero noise temperature can also be reached for
arbitrary values of the optomechanical parameter ζ (ζ 6=
g), by a proper choice of the squeezed quadrature and of
the squeezing factor (see Eqs. (58–60)). It is in particular
possible to reduce the optomechanical parameter at the
expense of an increase of the squeezing factor.

7 Conclusion

The whole detection and feedback system used in cold
damping techniques allows to simulate a thermal reservoir
at zero temperature. It is then possible in principle to cool
the oscillator down to its zero-point quantum fluctuations.

The optomechanical system is well adapted to cold
damping and can be optimized to reach the limits imposed
by quantum mechanics. In this system, the performance
limits are due to the Heisenberg inequality on the inten-
sity and phase of the detection beam. They correspond to
the general limits of cold damping.

As it is the case for classical cold damping, thermal
fluctuations are reduced by a factor inversely proportional
to the feedback gain. Zero-point quantum fluctuations of
the oscillator are however left unchanged by feedback and
provide a limit to the reduction of the oscillator energy.

Reduction of the effective temperature is accompanied
by an increase of the effective damping of the mirror. Al-
though the energy is limited by zero-point fluctuations,

we have shown that arbitrarily large noise reduction can
be achieved at a given frequency.

One may finally wonder how these limits can be ex-
perimentally observed. The residual Brownian motion of
the cold damped mirror can be measured by a second dis-
placement sensor, or equivalently by using a second in-
dependent light beam in the high-finesse cavity. One has
however to take into account the quantum noises associ-
ated with this second beam. As for the first intracavity
beam, one finds that radiation pressure effects of the sec-
ond beam are controlled by the feedback loop so that the
sensitivity of the measurement is only limited by the phase
noise, which can be made arbitrarily small by increasing
the light power.
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